Reconstruction Network for Video Captioning
نویسندگان
چکیده
In this paper, the problem of describing visual contents of a video sequence with natural language is addressed. Unlike previous video captioning work mainly exploiting the cues of video contents to make a language description, we propose a reconstruction network (RecNet) with a novel encoder-decoder-reconstructor architecture, which leverages both the forward (video to sentence) and backward (sentence to video) flows for video captioning. Specifically, the encoder-decoder makes use of the forward flow to produce the sentence description based on the encoded video semantic features. Two types of reconstructors are customized to employ the backward flow and reproduce the video features based on the hidden state sequence generated by the decoder. The generation loss yielded by the encoder-decoder and the reconstruction loss introduced by the reconstructor are jointly drawn into training the proposed RecNet in an end-to-end fashion. Experimental results on benchmark datasets demonstrate that the proposed reconstructor can boost the encoder-decoder models and leads to significant gains in video caption accuracy.
منابع مشابه
End-to-End Video Captioning with Multitask Reinforcement Learning
Although end-to-end (E2E) learning has led to promising performance on a variety of tasks, it is often impeded by hardware constraints (e.g., GPU memories) and is prone to overfitting. When it comes to video captioning, one of the most challenging benchmark tasks in computer vision and machine learning, those limitations of E2E learning are especially amplified by the fact that both the input v...
متن کاملEnd-to-End Dense Video Captioning with Masked Transformer
Dense video captioning aims to generate text descriptions for all events in an untrimmed video. This involves both detecting and describing events. Therefore, all previous methods on dense video captioning tackle this problem by building two models, i.e. an event proposal and a captioning model, for these two sub-problems. The models are either trained separately or in alternation. This prevent...
متن کاملVideo to Text Summary: Joint Video Summarization and Captioning with Recurrent Neural Networks
Video summarization and video captioning are considered two separate tasks in existing studies. For longer videos, automatically identifying the important parts of video content and annotating them with captions will enable a richer and more concise condensation of the video. We propose a general neural network configuration that jointly considers two supervisory signals (i.e., an image-based v...
متن کاملAutomatic Video Captioning using Deep Neural Network
Video understanding has become increasingly important as surveillance, social, and informational videos weave themselves into our everyday lives. Video captioning offers a simple way to summarize, index, and search the data. Most video captioning models utilize a video encoder and captioning decoder framework. Hierarchical encoders can abstractly capture clip level temporal features to represen...
متن کاملSpatio-Temporal Attention Models for Grounded Video Captioning
Automatic video captioning is challenging due to the complex interactions in dynamic real scenes. A comprehensive system would ultimately localize and track the objects, actions and interactions present in a video and generate a description that relies on temporal localization in order to ground the visual concepts. However, most existing automatic video captioning systems map from raw video da...
متن کامل